# High sensitivity COVID-19 detection using a molecularly imprinted polymer-based sensor

A.K. Thomson, R.E. Johnson, F. Canfarotta, A.J. Groves, J.D. Czulak, A. Guerreiro (MIP Diagnostics Limited, Sharnbrook, United Kingdom)

# Background

MIP Diagnostics produces nanoMIPs<sup>™</sup> (nano-sized molecularly imprinted polymers) that are suitable for use in clinical diagnostic systems as a synthetic alternative to antibodies. They have unique properties compared to traditional binding molecules, not least the ability to be autoclaved and still retain functionality.

# Methodology

nanoMIPs<sup>TM</sup> specific to the spike protein of SARS-CoV-2 (COVID-19) were synthesized using proprietary methodology, whereby a portion of the receptor binding domain (RBD) region of the spike glycoprotein molecule was immobilised on a solid phase, monomers and cross-linker were added, controlled polymerisation was initiated and, ultimately, nanoMIPs<sup>TM</sup> with high affinity for the spike protein were eluted. The affinity of the nanoMIPs<sup>TM</sup> for the spike glycoprotein was assessed using SPR (surface plasmon resonance), and selectivity was proven using dot blot.



### **MIP production**

nanoMIP<sup>TM</sup> imprinting demonstrating the polymerisation step of the production process.

Subsequently the nanoMIPs<sup>TM</sup> were incorporated into a sensor platform by Marloes Peeters' Group at the University of Newcastle (UK). Screen printed electrodes were activated and nanoMIPs<sup>TM</sup> were coupled to the surface of the electrodes via EDC/NHS chemistry. The functionalised electrodes were then placed into flow cells, such that solutions of analyte could be passed over the electrodes. The flow cells were connected to a heat-transfer device, and the thermal resistance (Rth) was determined by dividing the temperature gradient  $(T_1-T_2)$  over the power required to keep the heat sink at 37°C.

M. Peeters, J. McClements, B. Payne (University Of Newcastle, United Kingdom)

# Results

#### Thermal Stability by SPR (below, left)

COVID-19 nanoMIPs<sup>™</sup> have excellent stability. The SPR data below is from a lot of COVID-19 nanoMIPs<sup>TM</sup> pre- and post-autoclave (121°C, 15 minutes approx.) as analysed by SPR using the BiaCore. As evidenced, the affinity values are consistent (within experimental error) and this level of stability will lead to a very long shelf-life.



 $K_{D}$  pre-autoclave = 7nM

 $K_{D}$  post-autoclave =

NB: two chips / runs

### Selectivity by Dot Blot (above, right)

SARS-CoV-2 spike protein and other human coronaviruses; OC43 protein, 229E protein and HKU1 protein were spotted down and exposed to fluorescent tagged nanoMIPs<sup>TM</sup> in 2 parallel runs. The dot blot results demonstrated selectivity to SARS-CoV-2 spike protein and no cross reactivity to the other human coronaviruses.

#### **Advanced SPR Sensor Analysis**

The COVID-19 nanoMIPs<sup>TM</sup> were immobilized onto an advanced SPR sensor platform by the group of Nikhil Bhalla at University of Ulster (UK). Detection of spike protein from multiple SARS-CoV-2 variants was observed at sub-pM concentrations, and the Dot Blot selectivity above was re-confirmed.



A. Strapazon (University Of São Paolo, Brazil) N. Bhalla (University Of Ulster, United Kingdom)



#### **Sensitivity by Sensor Analysis**

The COVID-19 nanoMIPs<sup>™</sup> and a commercially available antibody to the COVID-19 spike protein from a leading antibody supplier were immobilized on separate electrode surfaces and integrated into a sensor platform that relies on monitoring the thermal resistance (R<sub>th</sub>) at the solid-liquid interface by Marloes Peeters Group, Newcastle University.

Analytical sensitivity was tested in PBS buffer spiked with SARS-CoV-2 receptor binding domain protein. The dose response curves show an analytical sensitivity of < 5 fg/m with the COVID-19 nanoMIP and a sensitivity of circa 105 fg/ml with the commercial antibody.

## Conclusions

MIP Diagnostics proprietary nanoMIPs<sup>TM</sup> specific for SARS-COV-2 (COVID-19) spike protein have been shown to have high affinity and specificity for the SARS-COV-2 spike glycoprotein with outstanding thermal stability. The MIPs have then been successfully integrated into multiple sensor systems demonstrating a limit of detection of <5 fg/ml, circa 20 times lower than the limit of detection achieved with an antibody from a leading commercial supplier. This level of sensitivity should facilitate a new wave of antigen-detecting COVID-19 rapid tests with reduced false negatives.





